Model Selection for Semiparametric Bayesian Models with Application to Overdispersion
نویسندگان
چکیده
In analyzing complicated data, we are often unwilling or not confident to impose a parametric model for the data-generating structure. One important example is data analysis for proportional or count data with overdispersion. The obvious advantage of assuming full parametric models is that one can resort to likelihood analyses, for instance, to use AIC or BIC to choose the most appropriate regression models. For overdispersed proportional data, possible parametric models include the Beta-binomial models, the double exponential models, etc. In this paper, we extend the generalized linear models by replacing the full parametric models with a finite number of moment restrictions on both the data and the structural parameters. For such semiparametric Bayesian models, we propose a method for selecting the best possible regression model in the semiparametric model class. We will apply the proposed model selection technique to overdispersed data. We will demonstrate the use of the proposed semiparametric information criterion using the well-known data on germination of Orobanche.
منابع مشابه
Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملBayesian Elastic-Net and Fused Lasso for Semiparametric Structural Equation Models
SUMMARY: Structural equation models are well-developed statistical tools for multivariate data with latent variables. Recently, much attention has been given to developing structural equation models that account for nonlinear relationships between the endogenous latent variables, the covariates, and the exogenous latent variables. [Guo et al. (2012)], developed a semiparametric structural equat...
متن کاملBayesian Inference for Generalized Additive Mixed Models Based on Markov Random ®eld Priors
Most regression problems in practice require ¯exible semiparametric forms of the predictor for modelling the dependence of responses on covariates. Moreover, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal or spatial data. We present a uni®ed approach for Bayesian inference via Markov chain Monte Car...
متن کاملBayesian inference for structured additive quantile regression models
Most quantile regression problems in practice require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference via Markov chai...
متن کاملSemiparametric Bayesian Inference in Multiple Equation Models
This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013